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We discuss the tunneling spectroscopy at a surface in multiband systems such as Fe-based superconductors
with the use of the quasiclassical approach. We extend the single-band method by M. Matsumoto and H. Shiba
�J. Phys. Soc. Jpn. 64, 1703 �1995�� into n-band systems �n�2�. We show that the appearance condition of the
zero-bias conductance peak does not depend on details of the pair-potential anisotropy, but it depends on
details of the normal-state properties in the case of fully gapped superconductors. The surface density of states
in a two-band superconductor is presented as a simplest application. The quasiclassical approach enables us to
calculate readily the surface-angular dependence of the tunneling spectroscopy.
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I. INTRODUCTION

Much attention has been focused on novel Fe-based su-
perconductors since the recent discovery of superconductiv-
ity at the high temperature of 26 K in LaFeAsO1−xFx.

1 Many
theoretical and experimental studies on Fe-based supercon-
ductors have been reported in the last year. It is important to
identify the superconducting order parameter to elucidate the
mechanism of superconductivity in those high-Tc materials.

A �s-wave pairing symmetry has been theoretically pro-
posed as one of the candidates for the pairing symmetry in
Fe-pnictide superconductors.2–11 The �s-wave symmetry
means that the symmetry of pair potentials on each Fermi
surface is s wave and the relative phase between them is �.
Recently, we showed that a fully gapped anisotropic
�s-wave superconductivity consistently explained experi-
mental observations such as nuclear magnetic relaxation rate
and superfluid density.12

A key point to identify the �s-wave symmetry is a detec-
tion of the sign change in the order parameters between
Fermi surfaces. It is difficult to detect the relative phase
of the order parameters in a bulk material. However, as
shown in studies of high-Tc cuprates, Andreev bound states
are formed at a surface or a junction when the quasiparticles
feel different signs of the order parameter before and after
scattering.13–15 Since one can extract the information on
the relative phase through Andreev bound states, several
theoretical studies on junctions and surfaces have been re-
ported recently.16–24 Andreev bound states at zero energy
have been experimentally observed as a zero-bias conduc-
tance peak �ZBCP� in tunneling spectroscopy for Fe-based
superconductors.25

The Fe-based superconductors are also interesting as
novel unconventional multiband superconductors since
multiband effects are essentially important there.3 Fermi sur-
faces in these systems predominantly consist of the d orbitals
of Fe atom. Kuroki et al.3 suggest that five orbitals are nec-
essary to describe the properties of the superconductivity and

they elaborate an effective five-band model. On the other
hand, MgB2 is a two-band system that is a conventional
s-wave BCS-type superconductor.

The aim of this paper is to develop a method for analyz-
ing surface bound states in multiband superconductors. Mat-
sumoto and Shiba26 developed a method to analyze surface
bound states in single-band systems such as high-Tc cuprates.
We extend their method into multiband systems. Since the
ratio of the superconducting gap � to the Fermi energy EF is
small � /EF�1 in Fe-based superconductors, we can adopt a
quasiclassical approach. In this approach, all we need is only
to consider quasiparticles at the Fermi level. Thus, we can
reduce computational machine time and the physical picture
becomes clear. In addition, this approach enables us to easily
calculate the surface-angular dependence of tunneling spec-
troscopy. We find a general appearance condition of the
ZBCP for multiband systems. This general condition can be
applied to various pairing symmetries including �s wave
and d wave. With our method, we will discuss a two-band
superconductor as a simple example.

This paper is organized as follows. The formulation of our
quasiclassical approach is shown in Sec. II. We apply a qua-
siclassical approximation to eliminate fast spatial oscillations
with Fermi wavelength. The appearance condition of the
ZBCP in multiband systems is derived in Sec. III. The results
for a two-band model are shown as a simple example of our
approach in Sec. IV, where we will show both analytical and
numerical results. The discussions and conclusion are given
in Secs. V and VI, respectively. In the Appendix, we describe
the derivation of the appearance condition of the ZBCP when
a system can be treated without quasiclassical approxima-
tion.

II. FORMULATION

A. Orbital representation and band representation

Let us consider the local density of states near a surface
following a procedure by Matsumoto and Shiba.26 We as-
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sume a two-dimensional superconductor and consider a
specular surface for which the component of the quasiparti-
cle momentum along the surface is conserved as shown in
Fig. 1. We treat the surface as a potential U�r��̌3 where the
time-reversal symmetry is conserved.26 Here, �̌i�i=1,2 ,3�
denote Pauli matrices in Nambu space and r is the position in
the real space. We consider a n-orbital system which is a
periodic crystal with n atomic orbitals in unit cell. Through-
out the paper, hat â denotes a n�n matrix in the orbital
space and check ǎ denotes a 2n�2n matrix composed of the
2�2 Nambu space and the n�n orbital space. We calculate
the Green’s function under the influence of U�r��̌3. It is writ-
ten as

Ǧ�r,r�� = Ǧ0�r,r�� +� dr�Ǧ0�r,r��U�r���̌3Ǧ�r�,r� . �1�

Here Ǧ0 is an unperturbed Green’s function in the absence of
U. We take the x�y�-axis perpendicular �parallel� to the sur-
face as shown in Fig. 1. Considering the surface situated at
x=0 and the scattering potential U written as U�r�=U0��x�,
Eq. �1� is reduced to

Ǧ�x,ky,x�,ky�� = 2���ky − ky��Ǧ�x,x�,ky� , �2�

where

Ǧ�x,x�,ky� = Ǧ0�x,x�,ky� + Ǧ0�x,0,ky�U0�̌3

� �1 − Ǧ0�0,0,ky�U0�̌3�−1Ǧ0�0,x�,ky� . �3�

Here we have taken the Fourier transformation with respect
to y. We use units in which 	=1 and the coordinates r and
the momentum k are dimensionless. The surface is actually
represented in the limit U0→
. The Green’s function is then
given by

Ǧ�x,x�,ky� = Ǧ0�x,x�,ky� + ǦP�x,x�,ky� , �4�

where

ǦP�x,x�,ky� � − Ǧ0�x,0,ky�Ǧ0�0,0,ky�−1Ǧ0�0,x�,ky� . �5�

The local density of states at the position x for the momen-
tum ky is written as

N�x,ky� = −
1

�
Im�Tr ĜR�x,x,ky�� , �6�

where

ĜR�x,x,ky� = Ĝ�x,x,ky��i�m→E+i�. �7�

Here �m is the fermion Matsubara frequency and � is a
positive infinitesimal quantity. The unperturbed Green’s

function Ǧ0
R�x ,x� ,ky� is given by

Ǧ0
R�x,x�,ky� =

1

2�
� dkxe

ikx�x−x��Ǧ0
R�kx,ky� , �8�

where

Ǧ0
R�kx,ky� = �E − ȞN

o �kx,ky��−1. �9�

Here, ȞN
o �kx ,ky� is the 2n�2n Hamiltonian in Nambu and

orbital spaces written as

ȞN
o �� Ĥo �̂o

�̂o† − Ĥo
	 �10�

in the “orbital representation” where the base functions are
atomic orbitals in crystal unit cell. From now on, the sub-
script “o” indicates that matrices are represented with the

orbital basis. Ĥo is the Hamiltonian in the normal state rep-
resented as n�n matrix in the orbital space. Remember that

n is the number of the orbitals. �̂o is the superconducting
order parameter.

Let us introduce a n�n Hamiltonian in the “band repre-
sentation” defined by

Ĥb�kx,ky� � P̂−1�kx,ky�Ĥo�kx,ky�P̂�kx,ky� �11�

=

1 0 0

0 � 0

0 0 
n
� . �12�

Here 
i�i=1,2 , . . . ,n� denote the eigenvalues where the re-

lation 
i�
 j�i� j� is satisfied. P̂ is a unitary matrix that
consists of the eigenvectors that diagonalizes the Hamil-

tonian Ĥo. The 2n�2n Hamiltonian in Nambu and orbital
spaces in the band representation is also defined by

ȞN
b �kx,ky� � Ǔ−1�kx,ky�ȞN

o �kx,ky�Ǔ�kx,ky� �13�

=� Ĥb �̂b

�̂b† − Ĥb
	 , �14�

where

Ǔ�kx,ky� � �P̂�kx,ky� 0

0 P̂�kx,ky�
	 , �15�

�̂b � P̂−1�̂oP̂ . �16�

In general, �̂b contains off-diagonal elements which corre-
spond to interband pairings. Assuming that intraband pair-
ings are dominant, we neglect the off-diagonal �interband�
elements in �̂b

FIG. 1. Figure of a specular surface.
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�̂b � 
�1 0 0

0 � 0

0 0 �n
� . �17�

That is, we consider that only single pair potential is defined
on each Fermi surface. Here, �i is the pair potential on the
ith band. Substituting Eq. �13� into Eq. �9�, the Green’s func-

tion Ǧ0
R�kx ,ky� is written as

Ǧ0
R�kx,ky� = Ǔ�E − Ȟb�−1Ǔ−1. �18�

Assuming Eq. �17� and taking the inverse matrix of E− Ȟb,
one can obtain

Ǧ0
R�kx,ky� = Ǔ�Â+ B̂

B̂† Â−

	Ǔ−1, �19�

where

Â� =

E � 
1

− ��1�2 + E2 − 
1
2 0 0

0 � 0

0 0
E � 
n

− ��n�2 + E2 − 
n
2
� ,

�20�

B̂ =

�1

− ��1�2 + E2 − 
1
2 0 0

0 � 0

0 0
�n

− ��n�2 + E2 − 
n
2
� . �21�

We find that Eq. �19� can be rewritten as

Ǧ0
R�kx,ky� = 


i

Ǧi�kx,ky� , �22�

where i is the band index and

Ǧi �
1

− ��i�2 + E2 − 
i
2��E + 
i�M̂i �iM̂i

�i
�M̂i �E − 
i�M̂i

	 , �23�

�M̂i� jk = �P̂� ji�P̂�ki
� . �24�

Equation �22� is divided into a sum of the Green’s functions
defined on each band. Substituting Eq. �22� into Eq. �8�,
Ǧ0

R�x ,x� ,ky� is expressed as

Ǧ0
R�x,x�,ky� = 


i

1

2�
� dkxe

ikx�x−x��Ǧi�kx,ky� . �25�

Hence the kx integration is found to be performed on each
band independently.

B. Quasiclassical approach

We assume ��i��EF. This relation is satisfied in most of
systems such as conventional superconductors and Fe-based

ones. In this case, one can use a quasiclassical approach.
We consider a line with a fixed ky in the momentum

space. On this line, we classify n bands into two groups. One
group is composed of the bands on which the eigen energy

i�kx ,ky� crosses the Fermi level �for example, the bands i
=1 and 2 in Fig. 2�. The other group is composed of the
bands on which the eigenenergy does not cross the Fermi
level �the band i=3�. For the former group, we can analyti-

cally integrate Ǧi�kx ,ky� over kx with the use of a quasiclas-

sical approach since Ǧi�kx ,ky� is a function localized near the
Fermi level. For the latter group, we need to integrate

Ǧi�kx ,ky� over kx numerically since Ǧi�kx ,ky� is not a local-
ized function. However, the integrand is a smooth function
so that it is easy to perform such a numerical integration.

We integrate Ǧi�kx ,ky� on the bands of the first group with
the use of the quasiclassical approach. To perform the kx
integration, we divide the kx line with a fixed ky into some
segments as shown in Fig. 2. Each segment has only single
channel that is the point satisfying the relation 
i=EF. From
now on, l denotes the channel index and k denotes the maxi-
mum number of l. The integration for the ith band is written
as

� dkx � 

l=1

k �
−



 d
i

vi�
i�
. �26�

Expanding kx�
i� in the first order of 
i around 
i=EF as
kx�
i�=kFx+
i /vFx, one can carry out the integration by the
residue theorem

1

2�
� dkxe

ikx�x−x��Ǧi�kx,ky� = − i

l=1

k

Ǧi,l
F �kFx

i,l � , �27�

where

Ǧi,l
F �kFx

i,l � �
eikFx

i,l �x−x��ei�x−x���E2−��i�
2/�vFx

i,l �

2�vFx
i,l ��E2 − ��i�2

F̌�kFx
i,l � , �28�

F̌�kFx
i,l � � � f+�kFx

i,l �M̂i�kFx
i,l � �i�kFx

l �M̂i�kFx
i,l �

�i�kFx
i,l �M̂i�kFx

i.l � f−�kFx
i,l �M̂i�kFx

i,l �
	 , �29�

FIG. 2. Figures of band dispersions along a kx line with a fixed
ky.
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f��kFx
i,l � � E � sgn�x − x��sgn�vFx

i,l ��E2 − ��i�2. �30�

Here, kFx
l and vFx

l are the Fermi wave number and the Fermi
velocity on the lth channel, respectively. Using the above,
Eq. �25� can be written as

Ǧ0
R�x,x�,ky� = − i


i�Q


l=1

k

Ǧi,l
F �x,x�,kFx

i,l �

+ 

i�Q

1

2�
� dkxe

ikx�x−x��Ǧi�kx,ky� , �31�

where the elements in Q are the indices of the bands whose
energy dispersions cross the Fermi level for a fixed ky. Here
we assume �i�Q=0, namely, the superconducting order pa-
rameters are finite only around the Fermi level. It should be
noted that the second term on the right-hand side of Eq. �31�
cannot be neglected since Ǧ0

R�0,0 ,ky�−1 without this second
term may have artificial divergences.

C. Eliminating the fast oscillations with Fermi wavelength

We assume the condition kF��1 �i.e., ��i��EF� which is
the quasiclassical condition. Here � is the coherence length
of a superconductor. Under this condition, the short-range
spatial oscillations characterized by the Fermi wavelength
1 /kF can be eliminated. We rewrite Eq. �31� as

Ǧ0
R�x,x�,ky� = 


i
� dkxǨi�kx,ky�eikx�x−x��, �32�

where

Ǩi�Q�kx,ky� � − i

l

k

Gi,l
F �x,x�,kx���kx − kFx

i,l � , �33�

Ǩi�Q�kx,ky� �
1

2�
Ǧi�kx,ky� . �34�

The perturbed Green’s function ǦP�x ,x� ,ky� defined in Eq.
�5� can be written as

ǦP
R�x,x�,ky� = − 


i,i�
� dkxdkx�e

i�kxx−kx�x��Ǩi�kx,ky�

� Ǧ0
R�0,0,ky�−1Ǩi��kx�,ky� . �35�

Setting exp�i�kxx−kx�x���→1, we eliminate the short-range
oscillation while keeping the enveloping profile of the inte-
grand. Thus, the above equation is reduced to

ǦP
R�x,x�,ky� = − 


i
� dkxǨi�kx,ky�Ǧ0

R�0,0,ky�−1

� 

i�
� dkx�Ǩi��kx�,ky� . �36�

From this equation, it is concluded that the Andreev bound

states appear when Ǧ0
R�0,0 ,ky�−1 diverges, i.e., when

det Ǧ0
R�0,0 ,ky�=0.

III. APPEARANCE CONDITION OF THE ZBCP

Let us consider the appearance condition of the ZBCP in

n-band system at a surface. At the zero energy E=0, Ǧi,l
F �x

=0,x�=0,kFx
l,i � defined in Eq. �28� �for i�Q� is written as

Ǧi,l
F �kFx

i,l � =
sgn��i�
2�vFx

i,l � � 0 M̂i�kFx
i,l �

M̂i�kFx
i.l � 0

	 . �37�

For i�Q, we have from Eq. �23� with E=0,

Ǧi =
1

− 
i
2�
iM̂i 0

0 − 
iM̂i

	 , �38�

where we have set �i=0 because the superconducting order
parameter is assumed to be finite only near the Fermi level
and the bands with the indices i�Q do not cross it. Substi-
tuting the above equations into Eq. �31�, we can obtain the

appearance condition of the ZBCP from det Ǧ0
R�0,0 ,ky�=0

as

det�− Î L̂

L̂ Î
	 = 0, �39�

where

L̂ � − i

i�Q



l

sgn��i�kFx
i,l ��

2�vFx
i,l �

M̂i�kFx
i,l � , �40�

Î � 

i�Q

1

2�
� dkx


i�kx�
M̂i�kx� . �41�

Equation �40� shows that the appearance condition does not
depend on the anisotropy of the pair potentials and it de-
pends only on their signs because information on the pair
potentials is included in the form sgn��i�kFx

i,l �� in Eq. �40�.
This result shows that information on the normal state �i.e.,

the matrices M̂i and vFx
i,l � is important for the ZBCP to appear.

IV. TWO-BAND MODEL AS A SIMPLE EXAMPLE

A. Model

We calculate the density of states in a two-band supercon-
ductor as a simple example. We consider a two-band tight-
binding model on a square lattice. There are two orbitals on
each lattice site. The Hamiltonian with a 2�2 matrix form in
the normal state is described as

Ĥo = � − t cos�ka� − � 2t� sin�ka�sin�kb�
2t� sin�ka�sin�kb� − t cos�kb� − �

	 , �42�

in the orbital representation �n=2�. Here ka and kb are the
axes fixed to the crystal axes in the momentum space, t and
t� are intraorbital and interorbital hopping amplitudes, re-
spectively, and � denotes the chemical potential. We use the
unit in which the lattice constant a=1. This Hamiltonian can
be diagonalized into the matrix in the band representation

Ĥb, written as
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Ĥb = P̂−1ĤoP̂ = �
A 0

0 
B
	 . �43�

Here 
A�B� denotes the energy dispersion on the A�B� band.
As shown in Fig. 3, the Fermi surfaces consist of two parts
near the half filling.

We consider the two-band s-wave superconductor de-
scribed by the pair potential in the band representation

�̂b = ��A 0

0 �B
	 . �44�

Here �A�B� is the pair potential on the A�B� band.
We introduce the coordinates �ka ,kb� fixed to the crystal

axes

�ka

kb
	 = �cos � − sin �

sin � cos �
	�kx

ky
	 . �45�

Here the kx�ky� axis is the axis parallel �perpendicular� to the
surface and � is the angle between the ka and kx axes. Con-
sidering �110� surface, we fix �=� /4. The quasiparticle mo-
mentum ky is conserved since we consider the specular sur-
face.

It should be noted that one needs to treat the Brillouin
zone in the surface coordinates �kx ,ky� for each surface
angle since it is necessary to consider all possible scat-
tering processes at the specular surface �namely, all
ky-momentum-conserving processes�. For example, it na-
ively seems in Fig. 3�a� that possible scattering processes
occur only on the inner Fermi surface �red� for the �110�
surface ��=� /4� in the region ��2 /4�ky ���2 /2 �the ky
axis is directed in the direction of �ka ,kb�= �−1,1� in Fig.
3�a��. However for �110� surface, one has to also consider the
outside of the first Brillouin zone as shown in Fig. 4 so that
the scattering process between the outer Fermi surface
�green� and the inner Fermi surface �red� can occur.

At the half filling for �110� surface, the second term in Eq.
�31� does not exist since the energy dispersions of the A and
B bands always cross the Fermi level on kx line with any
fixed ky in the momentum space as shown in Fig. 4. In this

case, Î defined in Eq. �41� is zero because there is no band
with the index i�Q. Therefore, the appearance condition of
the ZBCP in Eq. �39� can be rewritten as

det L̂ = 0, �46�

where L̂ is defined in Eq. �40�.

B. Analytical results

1. At the half filling for [110] surface

We will analytically show that the ZBCP always appears
for any strength of the interorbital hopping t� in the case of
�110� surface ��=� /4� at the half filling. On the lines which
satisfy ka= �kx−ky� /�2=n� or kb= �kx+ky� /�2=n� in the

momentum space, one can easily obtain the unitary matrix P̂

that diagonalizes Ĥo

P̂�ky� = ��
1 0

0 1
	 , kx − ky = ne� or kx + ky = no�

�0 1

1 0
	 , kx − ky = no� or kx + ky = ne� .�

�47�

Here ne�o� is an even �odd� integer. Substituting these P̂�ky�
into Eq. �40�, we obtain L̂ as

L̂ �
sgn��A� + sgn��B�

�vFx�
�1 0

0 1
	 . �48�

The appearance condition of the ZBCP �Eq. �46�� is written
as

sgn��A� + sgn��B� = 0, �49�

on the lines where ka= �kx−ky� /�2=n� or kb= �kx+ky� /�2
=n�. This condition is always satisfied in the sign-reversing
s-wave ��s-wave� superconductors in this model. The
�s-wave symmetry means that the symmetry of pair poten-
tials on each Fermi surface is s wave and the relative phase
between them is �.2–12 Therefore, the ZBCP appears at the
points on the Fermi surfaces where the relation ka=0 or kb
=0 is satisfied in the momentum space.

2. Case of t� Õ t=0 for [110] surface

In the case of t� / t=0, we can analytically show that the
ZBCP always occurs for �110� surface. In this case, the uni-

tary matrix P̂ can be written as

(a)

π

0

-π
π0-π

k b

ka (b)

π

0

-π
π0-π

ka

FIG. 3. �Color online� Fermi surfaces in the two-band model. �a�
The half filling ��=0� and t�=0.1t. �b� �=0.2t and t�=0.2t.

FIG. 4. �Color online� Fermi surfaces ��=0 and t�=0.1t� and kx

line with fixed ky.
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P̂�ky� = ��
1 0

0 1
	 , kxky � 0

�0 1

1 0
	 , kxky � 0.� �50�

As in the case of Eq. �47�, these unitary matrices lead to the
same appearance condition of the ZBCP as Eq. �49�.

3. Case of t� Õ t=0 at the half filling for [110] surface

Finally, we discuss the difference between the appearance
conditions with and without the quasiclassical approach. As
shown in Appendix, the appearance condition obtained with-
out the quasiclassical approach for t�=0 at the half filling
�ky �0� is written as

�ab = 0, �51�

I1 = 0 or I2 = 0, �52�

where

I1,2 =
ln� �sin��ky/�2�+�1+��A/t�2�2

�sin��ky/�2�−�1+��A/t�2�2�
2�1 + ��A/t�2

,

−
ln� �sin��ky/�2�+�1+��B/t�2�2

�sin��ky/�2�−�1+��B/t�2�2�
2�1 + ��B/t�2

, �53�

�ab = − �� sgn��B/t�
�1 + ��A/t�2

+
sgn��B/t�

�1 + ��B/t�2
	 . �54�

Here we assume that the pair potentials �A and �B do not
depend on k for simplicity. The above equations suggest that
the appearance condition of the ZBCP depends on the details
of the amplitudes ��A� and ��B� in contrast to the quasiclas-
sical result �Eq. �49��. In the limit of ��A,B / t��1, on the
other hand, Eqs. �53� and �54� are reduced to Eq. �49� ob-

tained by the quasiclassical approximation. Thus the quasi-
classical and nonquasiclassical results coincide in this limit.
Therefore, it is suggested that our quasiclassical approach is
appropriate when ��A,B� / t�1.

C. Numerical results

The density of states at the surface is calculated from Eq.
�6� as

N�E� =
1

2�
� dkyN�x = 0,ky� . �55�

We consider the �s-wave superconductor2–12 and the same
two-band model as discussed in this section.

1. Dependence of the surface angle �

We show the energy dependence of the density of states
for various surface angle � in Figs. 5 and 6. The peak posi-
tions of the Andreev bound states depend on the surface
angle �. By comparing the results between Figs. 5 and 6, it is
noticed that these positions do not depend on the pair-
potential amplitude.

2. Dependence of the interband hopping amplitude t�

We investigate the dependence on the interorbital hopping
amplitude t�. We consider �110� surface ��=� /4�. As shown
in Fig. 7�a�, the ZBCP always exists at the half filling ��
=0� for any interband hopping amplitudes t�. At �=0.2t as
shown in Fig. 7�b�, the ZBCP only appears when without an
interband hopping, i.e., t�=0. These ZBCPs appear when the
appearance condition in Eq. �49� is satisfied.

V. DISCUSSION

The advantages of our method are that one can easily
investigate the surface-angle dependence of the density of
states with the use of the quasiclassical method and easily
calculate the density of states in the n-band �multiband� sys-
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FIG. 5. �Color online� The density of states at the surface for various surface angles. The pair potentials are �A=�=0.001t and
�B=−�A. �a� The half filling ��=0� and �b� �=0.2t. The interorbital hopping amplitude is t�=0.1t. The smearing factor is �=0.1�.
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tem with less computational machine time. Therefore, we
can take, for example, a realistic five-band model in order to
discuss the density of states for iron-based superconductors.
We will report its results in the near future.

We have assumed that the matrix of the pair potential in
the band representation does not have off-diagonal elements
which correspond to the interband pairings. When the inter-
band pairing is dominant, the Cooper pairs have center-of-
mass momentum q�0. Usually such pairs are not energeti-
cally favorable since the pair potentials have spacial
dependence even in bulk systems.

Starting with the same Matsumoto-Shiba method,26 Onari
et al.19 recently calculated the surface Andreev bound states
without the quasiclassical approximation. Their results show
that the peak positions of the Andreev bound states depend
on the gap amplitudes on two bands in the same two-band
model as considered in this paper and the ZBCP does not
always appear at the half filling. These results might seem-
ingly be inconsistent with our quasiclassical results. It is,
however, not the case.

Onari et al.19 obtained the perturbed Green’s function by
directly integrating the original unperturbed Green’s function
over kx and ky numerically. The original unperturbed Green’s
function has sharp peaks on Fermi surfaces in the momentum
space and rapid Fermi-wavelength oscillations in the real

space. We have integrated out those properties by the quasi-
classical approximation. It should be noted that the pair po-
tentials are of the order ��0.1t in Ref. 19. This parameter is
out of our quasiclassical approach �� / t�1�. As shown in
Sec. IV B 3, our analytical result, which depends on the de-
tails of the gap amplitudes and therefore is consistent with
Ref. 19, is reduced to the quasiclassical result in the limit
� / t�1. Thus, the differences in the obtained results between
Onari et al.19 and the present paper would be due to the
difference in applicable parameter regions.

The formulation derived in Secs. II and III can be applied
to general multiband superconductors including d-wave pair-
ing superconductor. The appearance condition for the ZBCP
is given as Eq. �39� in Sec. III. Let us consider, for instance,
the case of the two-band model discussed in Sec. IV at the
half filling for �110� surface. From Eq. �39�, the appearance
condition for the ZBCP is given as

sgn��A1� + sgn��A2� + sgn��B1� + sgn��B2� = 0. �56�

Here �A1 and �A2 are the pair potentials on the inner Fermi
surface �red� in Fig. 4, and �B1 and �B2 are the pair poten-
tials on the outer Fermi surface �green� there. For a two-band
d-wave superconductor, �A1=−�A2 and �B1=−�B2, so that
the above condition is satisfied and the ZBCP appears. Fur-
thermore, in the case of a single-band d-wave supercon-

0

0.5

1

1.5

2

2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

N
(E

)/
N
0

E/∆

(a) at Half filling (µ = 0)

[100] surface
[110] surface
[120] surface
[130] surface

0

0.5

1

1.5

2

2.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E/∆

(b) at µ = 0.2t

[100] surface
[110] surface
[120] surface
[130] surface

(a) (b)

FIG. 6. �Color online� The density of states at the surface for various surface angles. The pair potentials are �A=�=0.001t and
�B=−0.5�A. �a� The half filling ��=0� and �b� �=0.2t. The interorbital hopping amplitude is t�=0.1t. The smearing factor is �=0.1�.
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FIG. 7. �Color online� The
density of states at �110� surface
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�=0.2t. The smearing factor is �
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ductor, the appearance condition for the ZBCP is obtained
from Eq. �39� as

sgn��A1� + sgn��A2� = 0. �57�

This is consistent with previous results for d-wave pairing in
Refs. 13–15 and 26 where the ZBCP appears when the qua-
siparticles feel a superconducting phase change � in the
surface-scattering process A1↔A2 on a Fermi surface.

VI. CONCLUSION

In conclusion, we extended the single-band method by
Matsumoto and Shiba26 into general n-band case �n�2�.
With the use of the quasiclassical approximation, we devel-
oped the way to integrate the unperturbed Green’s function
with respect to kx which is the momentum component per-
pendicular to a surface. We showed that the appearance con-
dition of the ZBCP does not depend on any anisotropy in the
pair-potential amplitude, but only on the relative phase, in
the case of ��EF in n-band systems. The properties of the
normal state are influential for the ZBCP to appear.

We also calculated the surface density of states in the
two-band system as a simple example of our approach. We
suggested that our quasiclassical approach is appropriate
when ��� / t�1. We showed that the peaks of the density of
states due to the Andreev bound states depend on the surface
angle and the parameters in the normal state �t , t� ,�� so that
the sign-reversing s-wave ��s-wave� superconductors ex-
hibit complicated properties in the tunneling spectroscopy
compared to single-band d-wave superconductors.
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APPENDIX: INTEGRATION WITHOUT QUASI-
CLASSICAL APPROXIMATION

We will show the ZBCP appearance condition Eqs. �51�
and �52� for zero interorbital hopping amplitude �t�=0� by
integrating Eq. �25� in the simple two-band model for �110�
surface at the half filling.27

The Hamiltonian in the normal state is described as

Ĥo = ��1�k̃x, k̃y� 0

0 �2�k̃x, k̃y�
	 , �A1�

with

�1�k̃x, k̃y� = − t cos�k̃x − k̃y� , �A2�

�2�k̃x, k̃y� = − t cos�k̃x + k̃y� . �A3�

Here we have introduced k̃x=kx /�2 and k̃y =ky /�2. Consid-
ering the pair potentials �A,B which do not depend on k and

using the unitary matrix �Eq. �50��, the pair-potential matrix
in the orbital representation can be written as

�̂o = ��A��k̃x� + �B��− k̃x� 0

0 �A��k̃x� + �B��− k̃x�
	

���k̃x
0

0 �k̃x

	 . �A4�

The unperturbed retarded Green’s function Ǧ0
R�E ,kx ,ky� is

written as

Ǧ0
R�E, k̃x, k̃y� = �E − ȞN

o �−1 = �Â+ B̂

B̂ Â−

	 , �A5�

where

Â� = 

E � �1

− ��k̃x
�2 + E2 − �1

2 0

0
E � �2

− ��k̃x
�2 + E2 − �2

2
� , �A6�

B̂ =

�k̃x

− ��k̃x
�2 + E2 − �1

2 0

0
�k̃x

− ��k̃x
�2 + E2 − �2

2
� . �A7�

To investigate the appearance condition of the ZBCP, we set
E=0 �i.e., zero energy�, x=0 and x�=0 �i.e., at the surface�.
Then, we calculate Ǧ0

R�E=0,x=0,x�=0,ky� as

Ǧ0
R�E = 0,x = x� = 0, k̃y� = �

−�

� dk̃x

2�2�
Ǧ0

R�E = 0, k̃x, k̃y� .

�A8�

Each element in this matrix can be integrated analytically as

� dk̃x cos�k̃x � k̃y�

���2 + cos2�k̃x � k̃y�
=� − dx

���2 + 1 − x2 , �A9�

� dk̃x

���2 + cos2�k̃x � k̃y�
=� dx

1

1 + x2

���2 +
1

1 + x2

. �A10�

Integrating Ǧ0
R�E=0, k̃x , k̃y� by using the above formulae, we

finally obtain Ǧ0
R�E=0,x=0,x�=0,ky� as
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Ǧ0
R�E = 0,x = 0,x� = 0,ky� �

1

t

− I1 0 �ab 0

0 − I2 0 �ab

�ab 0 I1 0

0 �ab 0 I2

� , �A11�

where I1,2 and �ab are defined in Eqs. �53� and �54�. Its inverse matrix is written as

�Ǧ0
R�−1 � t


− I1

��ab�2 + I1
2 0

�ab

��ab�2 + I1
2 0

0
− I2

��ab�2 + I2
2 0

�ab

��ab�2 + I2
2

�ab

��ab�2 + I2
2 0

I1

��ab�2 + I1
2 0

0
�ab

��ab�2 + I2
2 0

I2

��ab�2 + I1
2

� . �A12�

The zero-energy bound states appear when �Ǧ0
R�−1 diverges as noticed from Eqs. �4� and �5�. Therefore, the appearance

condition of the ZBCP is expressed as

�ab = 0, �A13�

I1 = 0 or I2 = 0. �A14�
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